Semigroups and Stability of Nonautonomous Differential Equations in Banach Spaces
نویسنده
چکیده
This paper is concerned with nonautonomous differential equations in Banach spaces. Using the theory of semigroups of linear and nonlinear operators one investigates the semigroups of weighted translation operators associated with the underlying equations. Necessary and sufficient conditions for different types of stability are given in terms of spectral properties of the translation operators and the differential operators associated with the equations.
منابع مشابه
Stability Radius and Internal Versus External Stability in Banach Spaces: An Evolution Semigroup Approach
In this paper the theory of evolution semigroups is developed and used to provide a framework to study the stability of general linear control systems. These include autonomous and nonautonomous systems modeled with unbounded state-space operators acting on Banach spaces. This approach allows one to apply the classical theory of strongly continuous semigroups to timevarying systems. In particul...
متن کاملLyapunov Theorems for Banach Spaces
We present a spectral mapping theorem for semigroups on any Banach space E. From this, we obtain a characterization of exponential dichotomy for nonautonomous differential equations for £-valued functions. This characterization is given in terms of the spectrum of the generator of the semigroup of evolutionary operators.
متن کاملOptimal Feedback Control of Fractional Semilinear Integro-differential Equations in The Banach Spaces
Recently, there has been significant development in the existence of mild solutions for fractional semilinear integro-differential equations but optimal control is not provided. The aim of this paper is studying optimal feedback control for fractional semilinear integro-differential equations in an arbitrary Banach space associated with operators ...
متن کاملOn Exponential Stability of Variational Nonautonomous Difference Equations in Banach Spaces∗
In this paper we study two concepts of exponential stability for variational nonautonomous difference equations in Banach spaces. Characterizations of these concepts are given. The obtained results can be considered as generalizations for variational nonautonomous difference equations of some well-known theorems due to Barbashin and Datko . MSC: 34D05, 34D20, 93D20 keywords: variational differe...
متن کاملA Hyers-Ulam-Rassias stability result for functional equations in Intuitionistic Fuzzy Banach spaces
Hyers-Ulam-Rassias stability have been studied in the contexts of several areas of mathematics. The concept of fuzziness and its extensions have been introduced to almost all branches of mathematics in recent times.Here we define the cubic functional equation in 2-variables and establish that Hyers-Ulam-Rassias stability holds for such equations in intuitionistic fuzzy Banach spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010